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ABSTRACT
Program parallelization requires mapping computation anddata to
processors. Navigational Programming (NavP), based on theprin-
ciple of migrating computations, offers a different approach than
the conventional solutions that use a SPMD model. The three ma-
jor steps are: (1) Distribute the data, based on the access patterns
within the sequential code; (2) Insert navigational commands (i.e.,
hop statements) in the sequential code for the computation to fol-
low the data; and (3) Cut the sequential migrating thread andform
the multiple resulting threads into a mobile pipeline. Thispaper
focuses on data distribution. We introduce theNavigational Trace
Graph(NTG), a mathematical structure that captures the alignment
and distribution preferences of a sequential program. The data dis-
tribution is obtained by partitioning the NTG appropriately.

The advantages include: (1) Because NavP computations mi-
grate freely across partitions, our methodology can focus exclu-
sively on reducing communication overhead first and later deter-
mine the actual computation partition and parallelization. This is
in stark contrast to SPMD, where the data partitioning imposes hard
constraints on the threads because they are stationary; (2)We cre-
ate a block cyclic distribution pattern that are uniquely suited for
mobile pipelines to exploit full parallelism but not supported by
the classical HPF; (3) Our approach aligns entries rather than di-
mensions of the arrays and thus captures more accurately thecost
of data communication; and (4) Our solution allows the use of1D
arrays to store 2D or 3D data and supports sparse storage schemes.

Our methodology can be used either as part of an automated par-
allelizing compiler or as part of a human-aided parallelization ef-
fort. We provide visualization tools to support the latter scenario.
We present experimental results from several scientific applications
to demonstrate the effectiveness of our approach.

Keywords
data distribution, navigational trace graph, graph partitioning, nav-
igational programming, migrating computations

1. INTRODUCTION
Distributed parallel programming is traditionally done inthe Sin-

gle Program Multiple Data (SPMD) style [19], in which a process
or thread is stationary to a local partition of the data and thus is
the owner of both the data and the computation associated with the
data. Remote data that is required by a process is communicated
by arecv() and asend() posted by the requesting and the owner

processes, respectively. Navigational Programming (NavP) [29],
which is the programming of self-migrating computations, is an-
other means to distributed programming. The characteristics of
NavP are:(1) Self-migration is made possible by explicitly insert-
ing navigational statements (i.e.,hop(dest)) into the code. The
computation pauses at ahop(dest) statement, migrates to the des-
tination processordest, and resumes. Remote communication is
achieved by threads carrying data from one location to another. Mi-
grating threads are not permanent owners of any stationary data
and the computation that each thread is responsible for is typi-
cally performed on more than one processor, incurring low cost
in communication;(2) Self-migrating computations are user-level
threads. They are non-preemptive and the synchronizationsamong
them are through local events using thesignalEvent(evt) and
waitEvent(evt) statements. Two threads hopping between the
same source and destination preserve a FIFO ordering; and(3)There
are three kinds of variables: small data that follows a migrating
computation is loaded to athread-carried variable, while large data
that is stationary to a processor is stored in anode variable. Multi-
ple disjoint node variables can be used to construct a logical array
spanning several processors, called aDistributed Shared Variable
(DSV). A DSV provides a partitioned global address space.

The NavP methodology provides four steps of code transfor-
mations. Step 1. Data Distribution. The input to this step is a
sequential program to be parallelized. The objective is to find a
data distribution that minimizes the cost of communicationfor the
given sequential program, with a balanced (data) load as thecon-
straint. What is being distributed is the large-sized data usually
stored in a DSV.Step 2. Sequential→ DSC. Using the data dis-
tribution obtained from Step 1, the sequential code is augmented
with hop() statements to obtain adistributed sequential computing
(DSC)program [24]. In a DSC program, there is a single thread
that is responsible for the computation but auxiliary threads can
be used for prefetching [24]. The optimization process of obtain-
ing a good DSC is called DBLOCK Analysis[25], and it consists
of identifying Distributed Code Building Blocks (DBLOCK) of ap-
propriate granularities to resolve and then finding the right proces-
sor(s) to perform the computation for each DBLOCK resolved. A
DBLOCK is a block of code that accesses data distributed across
multiple processors [25]. In resolving a DBLOCK, we follow the
principle of pivot-computes[29]. That is, the computation repre-
sented by a DBLOCK should take place on the processor, called a
pivot node, that owns the largest portion of the distributed data. For
a given data distribution, DBLOCK analysis essentially conducts
computation distribution for NavP.Step 3. DSC→ DPC.The DSC
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(1) for j = 2 to N

(2) for i = 1 to j− 1

(3) a[j]← j ∗ (a[j] + a[i])/(j + i)

(4) end for

(5) a[j]← a[j]/j
(6) end for

(a)

(1) for j = 2 to N

(1.1)hop(node map[j]); x← a[l[j]]
(2) for i = 1 to j− 1

(2.1) hop(node map[i])

(3) x← j ∗ (x + a[l[i]])/(j + i)

(4) end for

(4.1)hop(node map[j]); a[l[j]]← x

(5) a[l[j]]← a[l[j]]/j
(6) end for

(b)

(0.1)signalEvent(evt, 1)
(1) parthreads j = 2 to N

(1.1) hop(node map[j]); x← a[l[j]]
(2) for i = 1 to j− 1

(2.1) hop(node map[i])
(2.2) if (i = 1) waitEvent(evt, j− 1)
(3) x← j ∗ (x + a[l[i]])/(j + i)
(3.1) if (i = 1) signalEvent(evt, j)
(4) end for

(4.1) hop(node map[j]); a[l[j]]← x

(5) a[l[j]]← a[l[j]]/j
(6) end parthreads

(c)

Figure 1: A simple algorithm. (a) Sequential. (b) DSC. (c) DPC using mobile pipelining.

thread from Step 2 can be cut into several shorter DSC threads
to build mobile pipelines[28] for distributed parallel computing
(DPC). The objective is to spread out computations as early as
possible, respecting dependency requirements. A mobile pipeline
can be phase-shifted to exploit full parallelism if the dependency
relationship allows [29], achieving what the high-level language
constructDOALL does. signalEvent() andwaitEvent() are in-
serted to synchronize the DSCs constituting the mobile pipeline.
Step 4. Feedback loop.This step estimates the tradeoffs between
communication/parallelism and adjusts data distribution, DBLOCK

analysis, and pipelining for a minimum overall wall clock time.
Achieving good data distribution is the topic of this paper.Good

data distribution schemes are crucial to the performance ofdis-
tributed parallel programs, because mistakes made in data distribu-
tion cannot be corrected by later programming efforts. We present
a data decomposition approach and intend to use it as part of adata
layout assistant tool for regular applications. The application pro-
grams that we are trying to help out thus are assumed to exhibit
repeatable data accessing patterns – patterns that are seenin small-
sized input data are going to show in very large problems. This
assumption holds also for existing automatic data decomposition
techniques for regular applications [2, 8, 11, 16, 20, 33, 22], since
they need static or dynamic performance analysis to find out prob-
lem size parameters such as loop bounds and array sizes. As part of
our tool, the programmer will be able to visualize the data layouts
found and experiment with different input sizes. Irregularapplica-
tions that are attacked using run-time solutions (e.g., theAdaptive
Mesh Refinement technique) are outside the scope of this paper.

In comparison with existing automatic data decomposition tech-
niques that are mostly analytical [2, 8, 11, 16, 20, 33, 22], our
“numerical” approach has a number of advantages:(1) Because
NavP computations migrate freely across partitions, our method-
ology can focus exclusively on reducing communication overhead
first and later determine the actual computation partition into mi-
grating threads and the parallelization using pipelining.This is in
stark contrast to SPMD, where the data partitioning imposeshard
constraints on the threads because they are stationary. Intuitively,
since the mapping between a data element to the instances of the
statements involving the element is one-to-many, decidingwhere
the element goes is an easier problem than deciding how the com-
putations are partitioned. Once a data distribution is chosen, com-
putation partitioning can be done easily using migrating threads;
(2) We create a block cyclic distribution pattern that is uniquely
suited for mobile pipelines to exploit full parallelism butnot sup-
ported by the classical HPF. This allows us to exploit full paral-
lelism without needing to redistribution large amount of data as
required by theDOALL approach;(3) We obtain data layouts by par-

titioning NTGs. So both alignment and distribution are solved very
efficiently at the same time;(4) Our partitioning tool can find un-
structured data layouts such as L-shaped blocks. These results are
from regular algorithms that access structured data structures (e.g.,
dense square matrices), which means that unstructured datadistri-
bution is desirable even for seemingly simple applications. Our so-
lution is able to do this because it aligns entries rather than dimen-
sions of the arrays and thus captures more accurately the cost of
data communication; and(5) Our approach is independent of array
storage schemes used while those relying on component-affinity
graphs (CAGs) or its variants [8, 11, 16, 20] are not. We can hence
help the programs that use sparse storage schemes. We will justify
these claims by examples and experimental results.

The rest of this paper is organized as follows. Section 2 intro-
duces NavP using a simple example. Section 3 reviews the related
work. In Section 4, we present our data decomposition technique in
the context of turning sequential into DSC programs. Section 5 dis-
cusses how to find data distributions for DPC programs. Section 6
presents experimental results. Section 7 concludes the paper.

2. BACKGROUND
To make this paper self-contained, we use the following exam-

ple to illustrate how NavP programming works. Consider the sim-
ple algorithm listed in Fig. 1(a), in which thejth iteration of the
outer loop, which computesa[j], consumes the values ofa[i] pro-
duced by all the previousj iterations. We assume a block data
distribution pattern for simplicity, and use individual arrays on the
PEs to host the data blocks. These arrays logically form a DSV.
The auxiliary arraynode map[.] provides the logical node hosting
a given array entry, andl[.] contains the local array index of an
entry with a given global index. A DSV thus provides a partitioned
global address space. The computation ofa[j] should take place
on the PEs where thea[i]s reside, so that the cost of communica-
tion for the subcomputation ofa[j] is minimized. We therefore put
a[j] in a thread-carried variable,x, and inserthop() statements in
the sequential code so that the computation follows the datait ac-
cesses (i.e., thea[i]s) through the network. The result is a DSC pro-
gram: the computation uses distributed data but has a singlelocus
of computation. Figure 1(b) shows the DSC code. Threehop() and
load/unload compound statements are inserted (at lines (1.1), (2.1),
and (4.1)) without changing the code structure. In the pseudocode,
x, i, andj are thread-carried variables, anda[.] is a DSV. If we cut
the single long DSC thread into multiple shorter threads, weget a
DPC program, listed in Fig. 1(c). Each computation ofj becomes
a DSC thread that is spawned by theparthreads at line (1). The
NavP parthreads construct generalizes the classicalDOACROSS

andDOALL parallelism constructs, but the spawned threads are DSC
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threads. The code for each thread, lines (1.1) through (5), remains
almost the same as the DSC code listed in Fig. 1(a). The only dif-
ference is the insertion of two new lines to synchronize the accesses
to the entrya[1]. Each thread waits at line (2.2) until the previous
thread is done accessinga[1], and at line (3.1) it notifies all other
threads on the logical node that it has finished accessinga[1]. In
this way, the threads organize themselves into a mobile pipeline
when they accessa[1]: the thread computinga[j] runs immedi-
ately after the thread computinga[j− 1]. Because of their FIFO
scheduling, migrating threads do not pass each other in the mobile
pipeline. Each computation migrates through the pipeline,progres-
sively visiting the successive stages (the entriesa[i] that it succes-
sively incorporates into its computation). Notice that in NavP syn-
chronizations are only local among the collocated threads.Figure 2
schematically depicts how a mobile pipeline works.

j+1

PE1 PE2 PE3 PE4 PE5

j

Figure 2: Mobile pipeline of DSC threads.

NavP has a number of advantages.(1) As validated by our pre-
liminary results [29, 30, 28], NavP implementations are always
competitive with the best MPI implementations in terms of per-
formance, and in some cases are considerably better. As a special
use of NavP, DSC threads can speed up the execution of even a
single sequential process [24].(2) NavP is structured distributed
programming, as it directly captures the algorithm. MP, by com-
parison, requires significant restructuring of the program, obscur-
ing its original purpose. It has been pointed out thatsend andrecv
are harmful today for much the same reason that unrestrictedgoto

statements have been considered harmful since the “software cri-
sis” of the 1960’s [10]. Because of its structured programming,
NavP allows us to parallelize certain programs that are generally
considered unparallelizable using other approaches [28].(3) NavP
provides incremental parallelization, in the sense that a sequential
program can be converted into a fully parallel program through a
sequence of small transformations, where each intermediate step
is a fully functioning program [30]. This is in sharp contrast to
MP, where a parallel program usually requires a complete rewrite
and major restructuring.(4) Today a hybrid programming model of
MP+OpenMP is sometimes used [31], but this requires extensive
programming efforts. NavP is a unifying approach that allows us to
exploit both fine- (multithreading on shared memory) and coarse-
(pipelined tasks on distributed memory) grained parallelism. These
advantages make NavP a competitive alternative to MP as an inter-
mediate representation for manual programming as well as auto-
matic source-to-source code transformations by a compiler.

3. RELATED WORK
Distributed parallel computing has been a grand challenge,and

it is perhaps more important today than ever as we reach hard phys-
ical limits in driving processor clock speed and therefore turn our
focus on concurrency in software development. Recently, a number
of new programming languages or systems have been proposed [4,
5, 14]. Good data distribution schemes are of key importanceto all
of them.

Compiling a sequential program for a distributed memory ma-

chine requires a decomposition (i.e., mapping) of the program’s
data and computation across the processors. In the SPMD model,
data decomposition is performed first (by the programmer or com-
piler) while computation decomposition is inferred from the data
decomposition using the owner-computes rule. In NavP, as dis-
cussed earlier in Section 1, DBLOCK analysis essentially conducts
computation decomposition. So we will review only some auto-
matic data decomposition techniques below.

Given a code region, which may be the entire program, two dif-
ferent approaches are distinguished:static decompositions[11, 20]
(under which the data distribution for an array is fixed in theen-
tire region) anddynamic decompositions[2, 8, 16, 33, 22] (under
which different data distributions for an array may be used in dif-
ferent segments of the region). In the latter case, the region under
consideration is divided into code segments, calledphases, such
that data remapping is only allowed between phases [8, 16]. In the
former case, the entire region forms one single phase.

Given a phase, some techniques [16, 20, 33] decompose the map-
ping problem within the phase into two sequential steps: alignment
and distribution. The alignment step identifies the dimensions of all
arrays that should be mapped to the same dimension of a processor
network. The distribution step decides which aligned dimensions
should be distributed in aBLOCK, CYCLIC or BLOCK-CYCLIC
manner. A central representation for the alignment problemis the
weighted undirectedcomponent affinity graph(CAG) [20], where
the nodes represent the dimensions of all arrays in the phase, edges
the alignment preferences between dimensions of distinct arrays,
and the edge weights the relative importance of alignment pref-
erences. Alternatively, both steps can be solved at the sametime.
Based on the concept of CAG, both communication constraints(for
reducing communication) and parallelization constraints(for pre-
servingDOALL parallelism) are solved analytically [11] to find a
data decomposition for a phase. In [2], affine transformations are
used to find both data decomposition and computation decomposi-
tion simultaneously. They aim at computing communication-free
mappings with the largest degree ofDOALL parallelism [12].

There are several approachs to finding a data layout for a code
region consisting of pre-defined phases. In [16], the problem is
solved by 0-1 integer programming based on the so-called data
layout graph (DLG), whose nodes are candidate layouts for every
phase and edges represent the remappings between candidatelay-
outs. The solution found is thus limited to the set of candidate lay-
outs initially selected for each phase. Only 1DBLOCK distributions
are considered. In [8], a variation of CAG, calledcommunication-
parallelism graph(CPG), is introduced so that alignment, distri-
bution, remapping andDOALL parallelism are all considered in the
same framework by 0-1 integer programming. In addition to 2D
BLOCK distributions, 2DCYCLIC distributions are also considered
for triangular loop nests. In [2], a so-calledcommunication graph
with its nodes representing the loop nests and edges the remap-
pings between the loop nests is used to model data distributions
that change dynamically. Both data and computation decomposi-
tions are found in a linear algebra framework in a greedy manner.

Like all these data decomposition techniques, our proposedtech-
nique is intra-procedural. Some inter-procedural techniques ex-
ist [3, 23]. Our technique is defined for individual phases, where
a phase (to us) is a well-defined algorithm usually in the formof a
function. This gives us the ability to handle large applications with
multiple function calls. Extending our technique to multi-phase al-
gorithms requires deciding whether or not to redistribute the data
between each pair of consecutive phases. One approach is to ap-
ply our technique to each phase and to each sequence of consecu-
tive phases, treating the sequence as a single phase. (This requires
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applying our techniqueO(n2) times if there aren phases.) Once
we have done this, the problem of deciding at which phase bound-
aries we should redistribute the data can be solved by a straightfor-
ward dynamic programming algorithm, quadratic in the number of
phases. (The problem is essentially the same as finding a shortest
path in a directed acyclic graph with positive costs on both edges
and vertices.)

In comparison with the existing analytical techniques, our“nu-
merical” approach has several advantages that we summarized at
the end of Section 1. The problem of finding optimal data de-
composition is known to be NP-complete. Previously, different
techniques use different heuristics to estimate the benefits of par-
allelism and the cost of communication in their formulations. As
discussed above, they find approximately optimal solutionsanalyt-
ically or by integer programming. Our approach is numericalin the
sense that we find optimal solutions by using a graph partitioning
tool (e.g., Metis [15]). Our approach is also approximate since such
a partitioning tool is.

4. FINDING DATA LAYOUTS FOR DSC
When turning a sequential program into a DSC program, we

must first find a data distribution for the DSC program. In this
section, we present an intra-procedural technique for achieving this
task. Presently, our technique works on individual phases,which
are well-defined basic algorithms that are usually in the form of
functions in scientific applications. In what follows, by a program
we mean a phase (e.g., a code region) for which data layouts are to
be found. How to find data layouts for multiple phases is our future
work.

There are three key steps:(1) Build a so-callednavigational
trace graph(NTG) or trace graph for short by program instrumen-
tation;(2) Find a data layout by partitioning the NTG using a graph
partitioning tool; and(3) Express the data layout found using the
data distribution mechanisms that NavP supports.

Let there beK processors. To find a data distribution for a DSC
program, we will find aK-way partition of the corresponding NTG.
The objective is to find such a data distribution by minimizing the
cost of communication, with a balanced (data) load as the con-
straint. In Section 5, we will discuss how to find a cyclic datadis-
tribution for a DPC program with a balanced computation load. By
using cyclic distributions, we can also make the tradeoffs between
communication cost and exploitable parallelism.

4.1 Building an NTG

DEFINITION 1. An NTG for a program is a weighted undi-
rected graph (without self-loops), where the vertices are the entries
of DSVs (one for every entry of every DSV) and the edges (with
positive weights) represent the affinity relations among the vertices
as the locus of computation finds it way through them.

The NTG for a program is generated by running the program
against a small problem. The larger the weight of an edge is, the
stronger the two incident vertices want to stay together on the same
PE. Unlike component-affinity graphs [8, 11, 16, 20, 21], ourNTGs
are constructed for NavP programs, which are equipped with mo-
bility and can follow the data. Thus, the construction of an NTG
follows the movement of the locus of computation under the NavP
view [27]. In addition, the data entries of the arrays that will be
distributed, regardless of which array they belong to, become the
vertices of the same graph. In this way the problems of alignment
and distribution, which are solved separately in other approaches,
are addressed in a unified manner.

1 Algorithm BUILD NTG
2 INPUT: a program
3 OUTPUT: a (weighted undirected graph) NTGG = (V, E)
4 LetListOfStmt be a list of all statements executed in that order

for a given program with respect to a small problem size

5 // Step 1: Edge Creation (with G being a multi-graph)
6 LetV be the set of all DSV entries accessed in the program
7 LetE = ∅

8 // Add L edges
9 for every entryv in every DSV array

10 Add toE an L edge betweenv and each of its neighboring entries
11 // Add PC edges
12 for every statements in ListOfStmt whose LHS is a DSV entry
13 Repeatly replace every non-DSV data entryv in the RHS ofs, where

v is defined by the statement of the form v = “...”, with the “...”
14 LetRHSs be the set of all DSV entries in the RHS ofs

15 Add toE a PC edge between the LHS and every entry inRHSs

16 // Add C edges
17 for every two statementss andt in ListOfStmt such that no statement

in between inListOfStmt has access to DSV data entries
18 LetVs (Vt) be the set of all DSV entries accessed ins (t)
19 Add toE a C edge between every entry inVs and every entry inVt

20 Remove all self-loops inG

21 // Step 2: Edge Weight Selection
22 #defineL SCALING = a nonnegative value (typically within[0, 1])
23 Letnum Cedgesbe the total of C edges
24 Setc = 1
25 Setp = num Cedges+ 1
26 Set̀ = L SCALING ∗ p

27 Merge the multiple edges linking the same two vertices into
one single edge by accumulating their edge weights

Figure 3: An algorithm for building an NTG for a program.

(1) for i = 1 to M− 1

(2) for j = 0 to N− 1

(3) a[i][j]← a[i− 1][j] + 1

(4) end for

(5) end for

Figure 4: A program for illustrating construction of NTGs.

An NTG is constructed in two steps:(1) edge creation, and
(2) edge weight selection, which are described in the next sections.

4.1.1 Edge Creation
The construction of an NTG is based on three kinds of edges.

First, locality (or L) edges are introduced between the neighboring
entries of a DSV and they are assigned with the weight`. These
edges represent the locality of data access exhibited in many algo-
rithms (thus they are not dependent upon the particular algorithm
being parallelized), and they aim at obtaining regular datalayouts
for each array. Second, a producer-consumer (or PC) edge with
the weightp is introduced between an LHS DSV array entry and
a RHS DSV array entry. These edges indicate the occurrence of
communication if the two linked entries do not reside on the same
PE. Finally, every array entry of a DSV array in one statementis
connected with every DSV entry in its successive (in time) state-
ment with a continuity (or C) edge with the weightc. These edges
represent the change of locus of computation (i.e., hops) ifthe two
linked entries do not reside on the same PE and their purpose is to
help improve the granularity of computation.
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Figure 5: NTGs for Fig. 4 (M=4, N=3).

Our algorithm given in Fig. 3 creates these edges in lines 5 –
20. In line 4,ListOfStmt is the list of all dynamically executed
statements obtained by running the sequential program for arela-
tively small problem size. In lines 8 – 10, we introduce locality
edges. In lines 11 – 15, we introduce PC edges, which represent
data dependences among DSV entries. Note that a PC edge exists
between two DSV entries if one depends on the other directly or
indirectly via a chain of non-DSV data entries. Hence, line 13 is
needed to detect these PC edges. Consider the following sequence
of dynamically executed statements in a program:

...
t1 = b[3] + 1
t2 = a[2] + t1
a[5] = t2 + a[4]
...

wherea[] andb[] are DSVs, andt1 andt2 are non-DSV en-
tries. After line 13,a[5] = t2 + a[4] becomes

a[5] = a[2] + b[3] + 1 + a[4]

Thus, in lines 14 – 15, a PC edge is added between the DSV entry
a[5] and each of the three DSV entries,a[2], b[3] anda[4].
After line 13, all the statements that define the non-DSV entries are
ignored. It is possible to have multiple PC edges between thesame
two entries since the RHS entry may be fetched from its hosting
processor multiple times. This can happen since the RHS entry is
written multiple times and must be fetched each time before it is
used. Even if the RHS entry is never updated, we may still choose
to fetch it each time that it is used in order to obtain a scalable
solution.

In lines 16 – 19, we add C edges to the NTG. Again, there may be
multiple C edges between the same two entries representing multi-
ple hops required if both do not reside in the same PE. In line 20,
we remove all edges linking a vertex to itself.

At the end of this step, the NTG obtained is a multi-graph with
possibly one L edge, multiple PC edges and multiple C edges be-
tween any two vertices. As an example, applying this part of our al-
gorithm to the program in Fig. 4 yields the NTG shown in Fig. 5(a).

4.1.2 Edge Weight Selection
Given the roles that L, PC and C edges play, the relative mag-

nitudes of their weights will be chosen such that if the weight of

PC edges isp = 1, then the C edges will be assigned the weight
of infinitesimalc = ε > 0, and the L edges a nonnegative value
` > 0.

The motivations for this weight assignment are as follows. As we
shall see in Section 4.2, we obtain a data distribution for a program
by partitioning its NTG such that the weights of the total cutedges
are minimized. Since C edges have infinitesimal weights compared
to PC edges, they cannot (and should not) collectively affect the
producer-consumer affinity relationship of the data entries. Thus, C
edge cuts are encouraged and so is parallelism because the C edges
are not true dependences but artificial sequencing relations. As a
result, the entries linked with PC edges tend to stay on the same
PE. As for L edges, choosing different weights makes it possible to
tradeoff between data locality and parallelism. If` is close top or
larger, we will obtain a more regular partition, which usually results
in better data locality. If̀ is close to 0, the resulting data partition
will reflect more accurately the actual cost of communication of the
program. Such a partition tends to be less regular but may allow
more parallelism to be exploited.

There can be more than one way of assigning edge weights. Our
solution is given in lines 22 – 27 in Fig. 3, whereL SCALING is a
program-dependent parameter, which can be tuned in the feedback
loop of NavP based on performance profiling and evaluation.

Figure 5(b) depicts the final NTG obtained for the program given
in Fig. 4, under the assumption that` = 0.5p. The following sec-
tion explains how such a graph is partitioned to obtain a datadistri-
bution for a machine configuration.

To understand the roles that L, PC and C edges play and our so-
lution for their weight assignment (lines 22 – 27), let us consider
the four partitions given in Fig. 6 for the example given in Fig. 4. In
these (and all other) partition diagrams, all data entries sharing the
same grey scale are assigned to the same partition. The NTGs for
the example (with and without final edge weights) can be foundin
Fig. 5. Let us consider Fig. 6(a). When only PC edges are used,all
array columns are not linked by any edges. A 2-way partition thus
can contain any half of the columns. Such a partition exhibits full
parallelism at the expense of some thread hops (i.e., fine grained
computation). If we now include C edges and choose the weights
of PC and C edges according to line 25, the C edges will play the
role of tie-breakers and bring us a coarser grained data distribution
shown in Fig. 6(b). Through edge weight selection, we preferto cut
all C edges rather than even a single PC edge when the NTG is par-
titioned. As a result, the data distribution obtained in Fig. 6(b) ad-
mits full parallelism with also a minimal number of hops. If we did
not set edge weights using line 25, or in other words, if we setthe
C edges to be larger than infinitesimal compared to the PC edges,
we might get the partition shown in Fig. 6(c) if the matrix is shaped
long and thin. By introducing L edges, we will obtain more regu-
lar layouts, or precisely, block distributions if the weights of the L
edges are chosen to be relatively large, as shown in Fig. 6(d). Com-
pared to the first solution, the third and fourth solutions reduces
the number of hops. Compared to the second solution, they lose
some degree of parallelism; pipeline parallelism is exploitable but
full parallelism is not since the computations on the two partitions
cannot start simultaneously due to dependences within columns.

4.2 Partitioning the NTG
A DSC program consists of a single thread running onK PEs.

An NTG will be fed to a graph partitioning tool to find aK-way
partition with the overall objective of minimizing communication
cost incurred by the partition under the constraint of a balanced
(data) load.

Presently, the graph partitioning tool we use is Metis [15].Metis
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(` = 0.5p)

Figure 6: Two-way data distributions obtained by a graph par-
titioning tool for the program given in Fig. 4 (M=50, N=4).

uses a parameter called UBfactor to specify the imbalance allowed
between the partitions during recursive bisection [15]. Ifthere aren
vertices in the NTG, the number of vertices in each partitionduring
each bisection step is between(50− b)n/100 and(50+ b)n/100.
In all the applications considered in this paper, UBfactor=1. In find-
ing aK-way partition, Metis will minimize the sum of the weights
of the cut edges spanning allK partitions. According to the Metis’
web site, graphs with over 1M vertices can be partitioned in 256
parts in under 20 seconds on a Pentium Pro PC.

By finding a minimum cut to partition an NTG, we are able to
minimize the total data movement among the PEs. We also main-
tain a data load balance in terms of data amount on the PEs because
a balanced partition is used as an optimization constraint.However,
balanced data load does not imply balanced computation load. This
will not affect DSC since it runs in one thread. As a matter of fact,
a balanced data load leads to a scalable DSC program. For DPC,
we use block cyclic data distribution to achieve computation load
balancing and better parallelism (more in Section 5).

Due to the presence of C edges in the NTG, which represent
change of locus of computation, we minimize the number of thread
hops. In other words, the C edges are helpful in keeping a coarse
level granularity, which is important to performance. We introduce
C edges to capture the artificial sequential dependency introduced
in sequential algorithms. Our NTGs are generated such that cuts
are more likely to be placed on the C edges to exploit parallelism,
other things being equal. If cuts are on PC edges, they are more
likely placed in the “direction” that is “parallel” to the PCedge
chains because this results in less PC edge cuts. For this reason, we
claim that our approach does not hinder parallelism.

4.3 Expressing the Partitions
We are building a visualization tool to present the recommended

data layouts (i.e., partitions) to the programmers. The tool displays
the partition, based on the mapping from array indices to graph
vertices used in the code instrumentation. Our preliminaryresults
are shown in Figs. 6, 7, 9, 11 and 12 as five examples.

These results are from regular algorithms that access structured
data structures (e.g., dense square matrices), which meansthat un-
structured data distribution is desirable even for seemingly simple
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(c) With C+L edges (̀ = 0.5p)

Figure 7: Transpose of a 60x60 matrix (3-way partition).

applications. Therefore, NavP needs to support not only theclas-
sic distribution mechanisms such asBLOCK andBLOCK-CYCLIC
as in HPF,GEN BLOCK andINDIRECTmappings (limited to one-
dimensional indirection arrays) as in HPF-2 but also othersthat can
describe the unstructured data layouts found by a graph partition-
ing tool. How to describe unstructured data layouts in NavP will be
part of our future work.

4.4 Applications
This section discusses show how our data distribution tool can

be used to find data distributions in three important applications,
matrix transpose, ADI (Alternating Direction Implicit) Integration,
and Crout factorization. These applications, which exhibit differ-
ent data access patterns, serve as good examples to validateour
proposed methodology. For matrix transpose, our approach is able
to find L-shaped communication-free data distributions that cannot
be found by previously existing approaches [8, 11, 16, 20, 21]. We
are able to find data distributions for ADI [17, 1, 16, 18] but do so
by solving both alignment and distribution at the same time.As
for Crout, the data distributions we find are independent of storage
schemes used for arrays (unlike these previous approaches).

4.4.1 Matrix transpose
Matrix transpose swaps the anti-diagonal entries of a matrix. The

pseudocode is omitted. The data distribution found as shownin
Fig. 7 consists of L-shaped partitions; it is optimal in the sense that
it is communication-free.

If we did not have C edges in the NTG, each anti-diagonal pair
will still be distributed in the same partitions, but pairs will be dis-
tributed in a dispersed fashion, as shown in Fig. 7(a), unlike what is
shown in Figs. 7(b) and (c), where contiguous partitions areseen.

With L edges (weight̀ = 0.5p), the resulting partition is regular
(except that the bottom-right entry is included in the top-left parti-
tion), as shown in Fig. 7(c). In the absence of L edges (` = 0), the
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partition becomes less regular, especially along the main diagonal
of the matrix, as shown in Fig. 7(b).

Our solution cannot be found by prior approaches since they
are limited toBLOCK andBLOCK-CYCLIC [8, 11, 16, 20, 21].
This optimal solution enables the programmers to explore full par-
allelism with zero communication at a coarse granularity level.

4.4.2 ADI integration

// time iteration

(1) for iter = 1 to niter

// Phase I : row sweep

(2) for j = 2 to N

(3) for i = 1 to N

(4) c[i][j] = c[i][j]− c[i][j− 1] ∗ a[i][j]/b[i][j− 1]
(5) b[i][j] = b[i][j]− a[i][j] ∗ a[i][j]/b[i][j− 1]
(6) end for

(7) end for

(8) for i = 1 to N

(9) c[i][N] = c[i][N]/b[i][N]
(10) end for

(11) for j = N− 1 to 1 by − 1

(12) for i = 1 to N

(13) c[i][j] = (c[i][j]− a[i][j + 1] ∗ c[i][j + 1])/b[i][j]
(14) end for

(15) end for

// Phase II : column sweep

(16) for j = 1 to N

(17) for i = 2 to N

(18) c[i][j] = c[i][j]− c[i− 1][j] ∗ a[i][j]/b[i− 1][j]
(19) b[i][j] = b[i][j]− a[i][j] ∗ a[i][j]/b[i− 1][j]
(20) end for

(21) end for

(22) for j = 1 to N

(23) c[N][j] = c[N][j]/b[N][j]
(24) end for

(25) for j = 1 to N

(26) for i = N− 1 to 1 by − 1

(27) c[i][j] = (c[i][j]− a[i + 1][j] ∗ c[i + 1][j])/b[i][j]
(28) end for

(29) end for

(30)end for

Figure 8: Pseudocode of ADI

ADI integration is an example used by several papers on data
distribution [17, 1, 16, 18]. The pseudocode for ADI is listed in
Fig. 8 [17, 16]. There are three 2D arrays, namelyc, a, andb, in-
volved in the computation. This code is usually subdivided into two
phases, namely a row sweep phase (lines (2)-(15)) and a column
sweep phase (lines (16)-(29)). These two phases are surrounded by
an outer loop of time iteration (line (1)). One possible solution, ex-
isted in previous work, is to find two different data mappingssuited
for their respective phases. We use our tool to find these two sep-
arate solutions and plot them in Figs. 9(a) and (b). Figure 9(c) de-
picts the data distributions for two phases combined together. The
two sweeps are twoDOALL loops (i.e., full parallelism with no com-
munication) if they use their own data distribution, but in between
the sweeps a dynamic data redistribution is needed. If both phases
are combined, pipeline parallelism can still be exploited.The ad-
vantage of this data distribution for the entire program is that no
dynamic data remapping is needed between the two phases. The
cost of a dynamic data remapping can vary dramatically on differ-
ent platforms.
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Figure 9: ADI integration on a 20x20 matrix (4-way).

4.4.3 Crout factorization
Crout factorization is a convenient variant of Gaussian Elimina-

tion [9, 13]. Figure 10 lists the sequential Crout algorithm. We
assume that the matrix being factorized,K[], is a square and sym-
metric matrix. SinceA is symmetric, only its upper half needs to be
stored. In our implementation,K[] is a 1D array. When the matrix
is sparse and banded, a 1D auxiliary array is used to store theindex
of the first non-zero entry (from the top) of each column.

(1) for j = 1 to N

(2) for i = 1 to j− 1

(3) K[i][j]← K[i][j]−
P

i−1
l=1

K[l][i] · K[l][j]
(4) end for

(5) for i = 1 to j− 1

(6) T← K[i][j]
(7) K[i][j]← T

K[i][i]

(8) K[j][j]← K[j][j]− T · K[i][j]
(9) end for

(10) end for

Figure 10: Pseudocode of Crout factorization.
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(a) Without L edges (̀= 0) (b) With L edges (̀ = p)

Figure 11: Crout factorization on a 40x40 matrix (5-way).

As shown in Fig. 11, our tool suggests a column-wise partition.
Note that the lower half of the matrix is not stored and shouldbe
ignored. For this algorithm, we obtain a regular data distribution if
the weights of PC and L edges are chosen to be equal.

In our approach, an NTG is independent of the storage scheme
used for the arrays in a program. This is an advantage over several
other approaches [8, 11, 16, 20, 21] in which their component-
affinity graphs are constructed from the dimensions of the matri-
ces [18, 16, 7]. Furthermore, these approaches may have difficulty
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in handling non-linear array subscript expressions introduced due
to 2D-to-1D array storage mappings. As demonstrated here, our
approach works when a 1D array is used to represent a 2D ma-
trix. It also works for sparse and banded matrices (which areoften
stored in 1D arrays). Figure 12 shows two such examples.
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(a) N=20, 2-way (b) N=50, 4-way

Figure 12: Crout factorization with sparse banded matrices
(30% bandwidth).

5. FINDING DATA LAYOUTS FOR DPC
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Figure 13: Performance as block cyclic data distribution isre-
fined (assuming two PEs, T is the sequential execution time.).

In NavP, we parallelize a program by first transforming it to DSC
and then turning DSC into DPC (Section 1). In Section 4, we pre-
sented our methodology for finding data layouts for DSC. The data
partitions found do not hinder parallelism. Furthermore, they will
also serve as the starting point to exploit more parallelism.

We propose to use a block cyclic data distribution evolved from
the solution suggested by our tool and apply pipelining codetrans-
formation [26] to further improve performance. In our work,a
block cyclic distribution means ann-round cyclic distribution of an
(nK)-way partition to aK-processor machine, where the partitions
can be rectangular or other shaped (e.g., L-shaped) blocks.So our
block cyclic distribution is a more general form ofBLOCK-CYCLIC
distribution. It would be difficult, if not impossible, to find optimal
block cyclic distributions automatically – there was not such a fu-
tile attempt before. In previous work on automatic data distribution
techniques,BLOCK is exclusively used [16],CYCLIC is consid-
ered only for triangular loop nests [8]. WhenBLOCK-CYCLIC is
used [11], the block sizes (or equivalently,n, here) are selected by
an exhaustive search. In [2, 20],BLOCK-CYCLIC is considered

only after data distributions have been found for virtual orparame-
terized processor spaces.

Figure 13 qualitatively depicts how the execution time changes
as we refine the block cyclic data distribution to have smaller and
smaller block sizes for the simple algorithm listed in Fig. 1. Our
data distribution tool provides a partition with the minimum com-
munication cost as our starting point (Number of Cyclic Blocks =
1 in Fig. 13). As we increase the number of cyclic data blocks,
we obtain more and more parallelism (hence less and less time
as depicted by the curve marked with P) at the cost of increased
communication (depicted by the curve marked with C). Note that
we follow the data distribution pattern suggested by our tool when
we increase the number of data blocks (when the number of data
blocks exceeds the number of PEs we call the data blocks “virtual
blocks”) – this will make sure that the communication cost remains
the minimum for each and every new partition we come up with.
At some point (when k=k0), the total execution time, depicted by
the curve with dashed line, will reach the minimum and then start
growing if we further increase the communication cost. Our pro-
posed approach provides a systematic way of achieving the best
performance for a particular application.
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Figure 14: The performance of the simple problem.

As mentioned earlier, our data distribution guarantees data load
balancing but not computation load balancing because we have mi-
grating computations in NavP. Block cyclic data distribution is ex-
pected to help with computation load balancing because computa-
tions will migrate to all the PEs more evenly.

Performance data in Fig. 14 shows how adjusting block size of
block cyclic data distribution could affect performance. When the
block size of block cyclic data distribution is chosen to be 5, the
performance is the best. A too coarse block size (of 10) or a too
fine block size (of 1 or 2) gives us worse performance.

6. EXPERIMENTAL RESULTS
In this section, we present our experimental results. The data

was obtained using a network of SUNW Ultra-60’s with 450 MHz
UltraSPARC-II CPU, 256MB of main memory, 1GB of virtual mem-
ory, 100Mbps of Ethernet connection with a collision-free switch,
and using the NFS file-sharing system. The C compiler used was
gcc 3.2.2, the MPI used was LAM MPI 7.0.6 [34], and the NavP
compiler and runtime system used was MESSENGERS1.2.05 [6].

6.1 Matrix Transpose
We have compared the costs of transposing a matrix in parallel

under two circumstances:(1) Each PE gets a vertical slice of the
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Figure 15: The cost of matrix transpose.
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Figure 16: Block cyclic distribution patterns.

matrix, as depicted in Fig. 9(b). This data distribution requires re-
mote data communication; and(2) Each PE gets an L-shaped slice
of the matrix, as depicted in Fig. 7(c). Only local data movement is
needed for this data distribution. Our experiment, as presented in
Fig. 15, shows that matrix transposing involving remote communi-
cation is more than twice as expensive as done locally.

6.2 ADI integration
We first turn the ADI code into a block implementation. That

is, we introduce “distribution blocks” — submatrix blocks that are
basic units for data distribution — in the matrices and convert the
loops over the matrix entries into the loops over the entrieswithin
the distribution blocks surrounded by the loops over the distribution
blocks. Next, we go through the NavP steps to parallelize ADI. In
particular, we first make the sweeps two DSCs and turn the outer
loop another DSC responsible for injecting the sweeper DSCs. We
then cut the sweeper DSCs into shorter ones and pipeline them.
These steps are illustrated using the simple example presented in
Section 2, we therefore skip the details here.

Figure 16 depicts two different block cyclic patterns — HPF and
our own NavP — in 1D and 2D cases. Each box in this figure
represents a submatrix block and the number in a box indicates the
ID of the PE that this block is assigned to. It is assumed that in
the 1D case we have two PEs and in the 2D case we have four
PEs. As in Fig. 8, the three square matrices are each of orderN. In
Fig. 16(a), a matrix is cut into four vertical slices each ofN × N/4
and the blocks are assigned to the two PEs in a block fashion (that
is, the first two blocks go to PE1 and the last two blocks go to PE2).
Figure 16(b) depicts a 1D block cyclic pattern where the blocks are
assigned to the PEs in order until the PEs are exhaustively used,
at which time the block assignment cycles back. In HPF [32], a
2D block cyclic pattern is the cross product of two 1D block cyclic
patterns, shown in Fig. 16(c). For 2D, each submatrix block is
N/4 × N/4. We develop our NavP block cyclic pattern, depicted
in Fig. 16(d), in which the first row of blocks are assigned to all

the PEs in order. (This is unlike the HPF pattern where the PEs
are arranged as a2 × 2 processor grid and the first row of blocks
are assigned cyclically along the first row of processors.) The next
rows are assigned to all the PEs in a similar way, except that they
are shifted east-ward one position from their previous rows. This
NavP block distribution is effectively a “skewed pattern.”When
the sweeper threads sweep through all the rows or columns, all PEs
are busy simultaneously. That is, we achieve full parallelism, at the
cost ofO(N) as one layer of the matrix entries is carried over from
block to block. In contrast, in the example shown in Fig. 16(c),
only two PEs are busy at any time as the sweeper DSCs sweep
through. The situation for the HPF pattern is worse when the PEs
are arranged as a 1D grid when, e.g., the number of PEs is a prime
number. As for the cost of communication, theDOALL approach
mentioned in Section 4.4.2 requiresO(N2) in data redistribution.

ADI Performance (niter = 10)
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Figure 17: The performance of ADI.

As presented in Fig. 17 (the numbers in the legend are matrix
orders), the NavP program using the NavP block cyclic data dis-
tribution pattern performs the best. Using the HPF block cyclic
pattern, the NavP program incurs the same communication cost of
O(N) but has less degree of parallelism. Therefore, the performance
is inferior, especially when the number of PEs is a prime number1.
Finally, if we employ data redistribution in theDOALL approach,
even though the two sweeps are fully parallel, the cost of data re-
distribution,O(N2), is so large that the overall performance is poor.
We used the MPI library callMPI Alltoall() to obtain the cost
for matrix redistribution.

With this example of ADI, we are able to demonstrate the follow-
ing: (1) We can solve both alignment and distribution, which are
solved in separate steps in earlier work, in a unified manner;(2)The
data distribution for NavP is obtained from minimizing the cost of
communication with load balancing as a constraint. Parallelism
is exploited later using mobile pipelines. The HPF style block
cyclic data distribution helps to improve parallelism by making the
PEs busy earlier, and NavP block cyclic data distribution, which
is novel from this paper, enables the NavP program to achievefull
parallelism; and(3) On loosely coupled systems such as clusters,
data redistribution between the two phases, aimed at achieving full
DOALL parallelism for both phases, is prohibitively expensive. As a
result, choosing a data distribution that minimizes communication
and further minimizing communication using DSCs that follow the
principle of pivot-computes are of decisive importance to overall
1We use a true 2D processor grid for the HPF block cyclic pattern
whenever possible.
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performance. Using pipelining may result in loss of some degree of
parallelism, but this impact to performance is secondary. Further-
more, with careful adjustment in data distribution using our NavP
cyclic pattern, it is still possible to achieve full parallelism using
mobile pipelines at a cost of asymptotically less communication
than what is required in theDOALL approach.

6.3 Crout factorization

Performance of Crout factorization
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Figure 18: The performance of Crout factorization.

Crout factorization has the data access pattern similar to the sim-
ple example presented in Section 2, except that the problem is now
2D. We initially use the data distribution depicted in Fig. 11(b) and
program our DSC thread to compute following the large-sizeddata
like shown in Fig. 2. The difference is that the DSC now carries a
column (entries on and above the diagonal line) of the 2D matrix
rather than an entry of the 1D array. The DPC is obtained in the
same way as described in Section 2 and block cyclic data distri-
bution (using a block of columns as a distribution unit) is used to
adjust the performance of the code as described in Section 5.We
omit the details of implementation due to a space limitationand
present the performance in Fig. 18.

7. CONCLUSIONS
This paper makes the following contributions:

• We present a new mathematical representation, callednavi-
gational trace graph(NTG), for representing the alignment
and distribution preferences in a program at the level of DSV
data entries in a unified manner. The NTG for a program
is obtained by running the program against a small problem
size. In a NTG, the nodes are the data entries of DSVs, the
edges (classified as producer-consumer (PC) edges for de-
pendences, continuity (C) edges for thread hops and locality
(L) edges for layout regularity) represent the affinity rela-
tions between data entries, and the edge weights represent
the relative importance of these affinity relations.

One fundamental difference between NTGs and some previ-
ous representations such as communication-parallelism graphs
(CPGs) [8] is that our NTGs do not impose explicit con-
straints for preserving allDOALL parallelism in the original
program. However, our NTGs do not hinder parallelism be-
cause we carefully choose the weights of the edges such that
the PC edges, which represent true dependency in the algo-
rithm, are infinitely heavier than the C edges, which are from
artificial sequencing of the program. More parallelism and

load balancing are achieved by using block cyclic data distri-
bution and mobile pipelining.

• We propose for the first time to use a graph partitioning tool
as a general strategy to obtain a data distribution from a given
NTG (for regular applications). Both alignment and distribu-
tion are solved very efficiently at the same time. Let there be
K processors. To find a data distribution for a DSC program,
we will find a K-way partition of the corresponding NTG.
The objective is to find such a data distribution by minimiz-
ing the cost of communication, with a balanced (data) load as
the constraint. For DPC, a cyclic data distribution in the form
of an(nK)-way partition will be found, wheren can be turned
by performance analysis. By using block cyclic distributions,
we can also make the tradeoffs between the communication
cost and exploitable parallelism in a program.

• We create a NavP distribution pattern, effectively a skewed
block data distribution, that allows us to exploit full paral-
lelism without redistributing large amount of data as required
by theDOALL approach. This pattern is novel and is uniquely
suited for mobile pipelines to our best knowledge;

• Our partitioning tool can find unstructured data layouts such
as the L-shaped blocks. It is able to do this because it aligns
entries rather than dimensions of the arrays and thus captures
more accurately the cost of data communication;

• Our approach is independent of array storage schemes used.
We can hence help the programs that use sparse storage schemes.

• We present experimental results to show the effectiveness of
our technique in three representative scientific applications.

Our future work includes extending this approach to large pro-
grams with multiple phases, developing an efficient algorithm to
automatically recognize and capture the data distributionpatterns
in a givenK-partition that human beings can recognize, and devis-
ing new language constructs that allow our programmers to express
layouts that do not exist in other approaches.
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